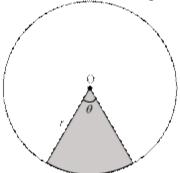
Areas Related to Circles

· Area of sector:

Area of the sector of angle $\theta = \frac{\theta}{360^{\circ}} \times \pi r^2$, where *r* is the radius of the circle.



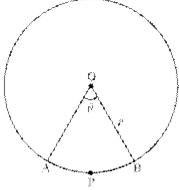
Area of quadrant:

Area of a quadrant of a circle with radius $r = \frac{\pi r^2}{4}$

$$\left[\theta = 90^{\circ} \Rightarrow \frac{\theta}{360^{\circ}} = \frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}\right]$$

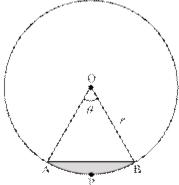
- Area of a semicircle $=\frac{180^{\circ}}{360^{\circ}} \times \pi r^2 = \frac{1}{2}\pi r^2$
- Length of an arc:

Length of an arc of a sector of angle $\theta = \frac{\theta}{360^{\circ}} \times 2\pi r$, where r is the radius of the circle



Perimeter of a Sector = I+2r

· Area of the segment of a circle

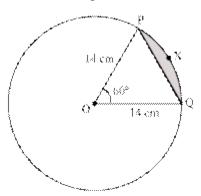


Area of segment APB

- = Area of sector OAPB Area of AOAB
- $= \frac{\theta}{360} \times \pi \sigma^2 \text{area of } \Delta OAB$

Example:

In the given figure, the radius of the circle is 14 cm, and $\Phi POQ = 60^{\circ}$. Find the area of the segment P XQ.



Solution:

Area of segment PXQ = Area of sector OPXQ - Area of $\triangle OPQ = (1)$

Area of sector OPXQ

$$= \frac{60^{\circ}}{360^{\circ}} \times \pi \times 14 \times 14 \text{ cm}^2 \qquad \left[\text{Area of sector of angle } \theta \text{ and radius } r = \frac{\theta}{360} \times \pi r^2 \right]$$

$$= \frac{1}{6} \times \frac{22}{7} \times 14 \times 14 \text{ cm}^2$$

$$= \frac{22}{3} \times 14 = \frac{308}{3} \text{ cm}^2$$

In AOPQ, we have

$$OP = OO$$

[radii of the same circle]

$$\Rightarrow \angle OPQ = \angle OQP = \frac{1}{2}(180 - 60^{\circ}) = 60^{\circ}$$

ΔOPQ is an equilateral triangle.

Area of
$$\triangle OPQ = \frac{\sqrt{3}}{4} \times (14)^2 \text{cm}^2$$

= $49\sqrt{3} \text{ cm}^2$

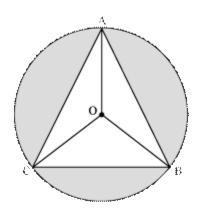
... From (1), Area of segment PXQ =
$$(\frac{308}{3} - 49\sqrt{3})$$
cm²

Areas of Combination of Plane Figures

Example:

In the given figure A, B, and C are points on the circle with centre O, such that

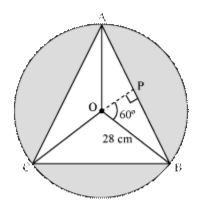
 $\angle AOB = \angle AOC = \angle BOC$. If the radius of the circle is 28 cm. Find the area of the shaded region.



Solution:

Area of the shaded region = Area of the circle – Area of \triangle ABC

Area of the circle =
$$\pi \times (\text{Radius})^2 = \frac{22}{7} \times 28 \times 28 \text{ cm}^2 = 22 \times 4 \times 28 \text{ cm}^2$$



Since
$$\angle AOB = \angle BOC = \angle AOC$$

$$\angle AOB + \angle BOC + \angle AOC = 360^{\circ}$$

$$\Rightarrow \angle AOB = \angle BOC = \angle AOC = \frac{1}{3} \times 360^{\circ} = 120^{\circ}$$

It can be easily shown that

$$\triangle AOB \cong \triangle AOC \cong \triangle BOC$$

$$\Rightarrow AB = BC = CA$$

Draw OP \perp AB

Then, in $\triangle OAP$ and $\triangle OBP$, we have

$$\angle OPA = \angle OPB = 90^{\circ}$$

$$\triangle \Delta OAP \cong \Delta OBP$$
 [by RHS congruency criterion]

$$\Rightarrow \angle AOP = \angle BOP$$
 [C.P.C.T]

$$\therefore \angle BOP = \frac{1}{2} \times 120^{o} = 60^{o}$$

Now,
$$\frac{PB}{OB} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$\therefore PB = \frac{\sqrt{3}}{2} \times 28 = 14\sqrt{3}$$

$$\therefore AB = AP + PB = 2PB = 2 \times 14\sqrt{3} = 28\sqrt{3} \text{ cm}$$

$$\therefore \text{Area of } \Delta \text{ABC} = \frac{\sqrt{3}}{4} \times (\text{side})^2 = \frac{\sqrt{3}}{4} \times 28\sqrt{3} \times 28\sqrt{3} \text{ cm}^2 = 7 \times 28 \times 3\sqrt{3} \text{ cm}^2$$

Thus, area of the shaded region

$$= \left(22 \times 4 \times 28 - 7 \times 28 \times 3\sqrt{3}\right) \text{ cm}^2$$

$$=28(88-21\sqrt{3})$$
 cm²

